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Mathematical Model for a Fed-Batch
Crystallization Process for Energetic Crystals

to Achieve Targeted Size Distributions
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In the manufacture of energetic materials including RDX,
HMX, CL-20, it is a challenge to obtain the targeted size
distribution. Generally blending is costly and regrinding
of the crystals increases the defect densities to give rise
to increased sensitivity. The ability to predict apriori the
size distribution of various energetic crystalline materials
upon recrystallization as a function of the operating condi-
tions, allows the optimization of the process parameters to
achieve the desired size distribution without having to
regrind or blend different size populations. Here a compre-
hensive mathematical model of the fed-batch crystalliza-
tion process consisting of two groups of equations is
presented. These include first the dynamic material and
energy equations, and second, a population balance model
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for the prediction of the number density of crystals as a
function of time and size as functions of the nucleation
and growth kinetics for the particles. A numerical solution
to the general problem, which involves the alternate solu-
tion of the equations at each time step, was developed
considering that the reactor volume changes with each
time step. Typical results are presented to demonstrate
the utility of the mathematical model of the recrystalliza-
tion process.

Keywords: CL-20, fed-batch crystallization process, HMX,
RDX, particle size

Introduction

A typical fed-batch crystallization process is shown in Fig. 1. In
the fed-batch crystallization process a hot solution consisting of
solvents and the energetic material is fed to the crystallizer at a

Figure 1. Typical fed-batch crystallizer system.
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rate such that the temperature is maintained at the desired set
point. A jacket to the crystallization vessel can be provided to
furnish better control of the crystallization temperature. The
crystallizer is generally loaded with a water heel such that a
high degree of supersaturation results when the dissolver solu-
tion is added, thus inducing crystallization. The crystallizer
can also be initially seeded. The proper selection of the para-
meters including the feeding rates, supersaturation conditions
including the concentrations of the antisolvent and tempera-
ture, the quantity of the seed crystals is necessary to allow
the achievement of a targeted particle size distribution of the
energetic crystals. The dynamics of the process is also affected
by the presence of a process controller and the parameters
selected for the control law to govern the process controller
(Fig. 2). A realistic mathematical model of the process should
provide a predictive understanding of the process dynamics
and the resultant size distributions [1]. For the prediction of
the population distributions of the crystals dispersed in the

Figure 2. Typical control system for crystallization.
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solvent=anti-solvent mixtures population balance modeling
is used [1–4]. To our knowledge, such population balance
methods have not been applied to the crystallization of the
energetic materials.

The Basic Tenets of the Process Model

The problem of simulating the behavior of the fed-batch process
involves two distinct systems; one, the dynamics of the crystal-
lizer and the dissolver discharge which serves as a feed system
to the crystallizer, and two, the crystallization process for a
crystallizer in which the volume varies with time.

The dynamics problem involves the simultaneous solution
of crystallizer material balances, energy balances, the cooling
jacket, and the process control equations. The crystallizer can
be modeled as a constant volume batch process for a very short
time increment. These equations must all be solved simulta-
neously along with a set of supporting equations such as, mean
heat capacities, mean densities, solubility of the energetic mate-
rial in mixtures which vary with the state of the process, and
other miscellaneous equations. The simultaneous solution of
this set of equations can be avoided, however, if one assumes
that, for a single time step, the two major systems are indepen-
dent of each other, and therefore they can be solved sequen-
tially. The solution technique is as follows:

1. Set up initial conditions for the dynamic equations and
the batch crystallizer (the seeding).

2. For a single time step solve the dynamic equations.
3. Apply the solution of the dynamic equations for the

calculation of solution supersaturation which is
required to calculate the growth and nucleation rates
for the crystallizer.

4. Solve the crystallizer equations for this time step.
5. Use the third moment of the distribution function to

calculate the mass of crystals in solution and adjust
the material balance calculated from the dynamic
equations.
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The solution proceeds by incrementing to the next time step
and using the current solution as the initial conditions for the
next step.

Dynamics of the Process

The solution of the process dynamics problem involves the
simultaneous solution of the describing equations as a function
of time. These equations are as follows:

Overall Material Balance

qA
dh

dt
¼ FD ð1Þ

Here q, is the density of the crystallizer solution, A is the cross
sectional area of the crystallizer, h is the height of fluid in the
crystallizer, and FD is the feed rate from the dissolver tank.

Crystallizer Component Material Balances

Solvent qA
dðxahÞ

dt
¼ yaFD ð2Þ

Solute qA
dðxshÞ

dt
¼ ysFD ð3Þ

Antisolvent xa þ xs þ xw ¼ 1 ð4Þ
Here xa, xs, and xw are the mass fractions of solvent, solute, and
antisolvent respectively in the crystallizer, and ya and ys are the
mass fractions of the solvent and solute in the dissolver.

Crystallizer Energy Balance

qAhcc
dTC

dt
¼ FDcDðTD � TCÞ �QW � kySFD ð5Þ

Here Cc and Tc refer to specific heat and temperature of crystal-
lizer and dissolver respectively by subscripts c and D. QW is the
heat removed by the coolant, and k is the heat of fusion of the
solute.
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Coolant Energy Balances

QW ¼ FWcWðTWI � TWOÞ ð6Þ
QW ¼ UAðTc � TWavg

Þ ð7Þ

Here FW is the coolant flow rate, TWI and TWO are the inlet and
outlet coolant temperatures, TWavg is the average coolant tem-
perature, and U is the overall heat transfer coefficient between
the crystallizer contents and the coolant.

PI Controller – Velocity Form

p ¼ p0 þ kc ðe � e0Þ þ
Dt

s
e

� �
ð8Þ

Here kc and s are the standard PI controller tuning parameters,
i.e., the gain and the derivative time settings and e and p are
the current time values of the controller error and the controller
output. When subscripted with 0, they refer to the previous
time step values, where Dt refers to the size of a time step.

Controller Set Point Error

e ¼ TSET � TC ð9Þ

Here the controller error is defined as the difference between the
set point temperature, TSET and the crystallizer temperature
TC.

Control Valve Equation

FD ¼ KVp ð10Þ
Here KV represents a linear valve constant.

The unknowns corresponding to the ten equations above
are as follows:

FD ¼ flow rate of material leaving dissolver
h ¼ height of fluid in crystallizer
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xa ¼ mass fraction of acetone in crystallizer
xs ¼ mass fraction of solute(liquid) in crystallizer
xW ¼ mass fraction of water in crystallizer
TC ¼ temperature of fluid in crystallizer
TWO ¼ temperature of cooling water leaving crystallizer
QW ¼ coolant duty
p ¼ controller output
e ¼ controller’s set point error

The ten equations include linear, non-linear, and differential
equations. In our solution methodology all derivatives are writ-
ten as backward differences in time. The equations are repeat-
edly solved by taking a single time step into the future. The
solution technique requires that initial conditions be provided
for all derivatives. At the first time step, the initial conditions
must be provided externally, but for each subsequent time step,
the initial conditions are the solution from the previous time
step. When the equations are written in numerical form at
any time step, they become a set of ten simultaneous non-linear
equations, which are solved by the Newton-Raphson method.

The Batch Crystallizer Equations

The basis for the modeling of a batch crystallizer is the well
known partial differential equation, developed by Randolph,
relating the number distribution function of the crystals, n, to
their characteristic length l, and time, shown below [3].

@n

@t
þ @ðgnÞ

@l
¼ 0 ð11Þ

It is clear that the effects of agglomeration, breakage and addi-
tional nucleation are assumed to be negligible. Such terms can
be incorporated for individual processes upon comparison of the
model predictions with time dependent data on particle size dis-
tributions collected during the course of the crystallization pro-
cess. The distribution function n is defined as dN=Vdl, where N
is the number of crystals per unit volume V, and l is the
characteristic length and the growth rate g, is defined as dl=dt.
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The growth rate is obtained fromexperimental data and is usually
correlated in an Arrhenius form given by Equation (12) below:

g ¼ agDCbg ð12Þ
where ag and bg are experimentally determined parameters and
DC is supersaturation i.e., the differencebetween the solution con-
centration and its solubility. The nucleation rate b, is defined as
ðdN=dtÞl¼0 is also usually correlated by an Arrhenius form given
by Equation (13) below where ab and bg are:

b ¼ abDCbb ð13Þ
experimentally determined parameters.

The solution to Randolph’s Equation requires initial condi-
tions, which must be given as the distribution function of the
seed crystals, and the boundary condition at l ¼ 0, which must
be given as a distribution function as well. At the boundary the
relationship

b ¼ n0g ð14Þ

applies, where n0 is the nuclei distribution function.
In this formulation it is assumed that the spatial variations

in the concentrations of the solute and the solvent=antisolvent
mixture are negligible. The fluid mechanics in the crystallizer is
also scale dependent and is also ignored in this analysis. The
equations can be written in a discretized implicit form, which
is convenient for solution numerically. The solution can be
visualized as a matrix of numbers where time is increasing
down the y axis and characteristic length increase along the x
axis. The following formulations for the derivatives provide a
set of linear simultaneous equations at each time step. For
@n=dl a central difference can be written as follows:

@n

@l
¼ nt;lþDl � nt;l�Dl

2Dl
ð15Þ

For @n=dt a backward difference can be written as follows:

@n

@t
¼ nt;l � nt�Dt;l

Dt
ð16Þ
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Substitution of the difference formulations into Randolph’s
Equation gives

gDt

2Dl
nt;lþDl þ nt;l �

gDt

2Dl
nt;l�Dl ¼ nt�Dt;l ð17Þ

This equation shows that all discretized points at a typical
point in time depends only on their adjacent points in length
and the point at the previous time. The last length point how-
ever, cannot employ a lþDl point since it does not exist, there-
fore the central difference approximation for @n=dl is replaced
with a backward difference as follows:

@n

@l
¼ nt;l � nt;l�Dl

Dl
ð18Þ

and Randolph’s Equation becomes:

1þ g
Dt

Dl

� �
nt;l �

gDt

Dl
¼ nt�Dt;l ð19Þ

When these equations are written for any time point they take
the familiar tri-diagonal form shown in Table 1, below, for ten
increments in l.

Table 1
Tri-diagonal matrix structure

Tri-diagonal matrix n(t,l) rhs

B C 0 0 0 0 0 0 0 0 n(t,1) R
A B C 0 0 0 0 0 0 0 n(t,2) R
0 A B C 0 0 0 0 0 0 n(t,3) R
0 0 A B C 0 0 0 0 0 n(t,4) R
0 0 0 A B C 0 0 0 0 n(t,5) R
0 0 0 0 A B C 0 0 0 n(t,6) R
0 0 0 0 0 A B C 0 0 n(t,7) R
0 0 0 0 0 0 A B C 0 n(t,8) R
0 0 0 0 0 0 0 A B C n(t,9) R
0 0 0 0 0 0 0 0 A B n(t,10) R
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Note that in the general solution matrix, the first value of n,
i.e., at l ¼ 0 for all t, n is the boundary condition given by
Equation (14). This system of equations is readily solved by
the Thomas Algorithm. In the tri-diagonal matrix, when the
l increment refers to the first row, l¼1, the values of the
coefficients are given below.

A ¼ 0
A ¼ 0 B ¼ 1

B ¼ 1 C ¼ gDt

2Dl

R ¼ nt;0; the boundary condition
b

g
:

For all values of l, except the last row the coefficients are.

A ¼ � gDt

2Dl

B ¼ 1

B ¼ 1 C ¼ gDt

2Dl

R ¼ nt�Dt;l; the value of n at l at the previous time step:

For l ¼ L, the last row the coefficients are.

A ¼ � gDt

Dl

B ¼ 1þ gDt

Dl

C ¼ 0

C ¼ 0 R ¼ nt�Dt;l; the value of n at l at the
previous time step.

A complete solution requires the simultaneous solution of the
dynamic and crystallization equations. In this development
the equations are solved in an alternating manner for a single
time step. At the conclusion of one step of the dynamic equa-
tions, a material balance yields DC, and b and g are evaluated.
These values are employed in the tri-diagonal matrix solution
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of the crystallizer equations for the current time step. The
material crystallized, MT is then calculated using the third
moment of the distribution function, Equation (20),

MT ¼ aqc

Z 1
0

nl3dl ð20Þ

which is used to correct the composition of the solution in the
crystallizer to initiate the next step in the dynamics.

Solution Implementation

A source code was written to incorporate the set of equations
described above. Separate subroutines are used for the calcula-
tion of nucleation and growth rates according to the Arrhenius
formulations. However, since DC is virtually zero initially, the
use of a global Arrhenius type correlation for growth and
nucleation is questionable. Similarly, there exists a subroutine
for the solubility of the solute in the solvent and antisolvent
mixture. The latent heat of fusion of the solute as well as the
other thermal properties of both the solute and the solvent,
and the overall heat transfer coefficient for the cooling jacket
and coil have to be determined apriori. In addition to these data
it is necessary to provide the particle size distribution data for
the seed crystals in the form of distribution function.

A sample run of the process dynamics solution is given in
Table 2 for RDX and a mixture of acetone and water, i.e.,
acetone is the solvent and water is the antisolvent. One may
observe that the performance of the control system, even
though not optimally tuned, is excellent. The typical results
for temperature control are shown in Fig. 3, upon a step change
in the feed temperature to return back to the steady state con-
dition without oscillations. Thus one may conclude that if the
method of control for the process employed in the model is
adopted in the field, an excellent degree of repeatability in
the performance of the process can be expected.

The crystal mass increases by an order of magnitude over
the entire length of the run. One may also note that, due to
the nature of the fed-batch process, DC has a tendency to
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Figure 3. Crystallizer temperature control.

Figure 4. The particle size distribution function.
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increase with time, the exact opposite of batch crystallization,
depending upon the rate of addition of dissolver fluid and the
buildup of crystal mass. After the addition ceases, DC will even-
tually go to zero.

The development of the size distribution of the RDX crys-
tals with time during the course of the crystallization process is
shown in Fig. 4 (over a relatively short time span). There is a
significant degree of freedom in the process to allow changes
in the operating parameters and the control parameters to be
made during the course of the crystallization process to allow
the tailoring of the particle size distribution.

Conclusions

A mathematical model of the crystallization from solution
process for energetic materials is provided. Such population
balance method based models allow the tailoring of the particle
size distribution as a function of the process conditions and
controller tuning parameters in industrial scale crystallizers
and their use in the energetics materials industry should be
encouraged.
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